Исследовательская компания Mediascope запустила в промышленную эксплуатацию Data Science платформу для разработки и внедрения моделей машинного обучения. Новая платформа позволит снизить операционные риски и сократить time-to-market интеграции моделей в бизнес-процессы Mediascope. Технологическим партнером проекта выступила компания Neoflex.
В результате проекта компания получила масштабируемое и управляемое пространство для разработки
На текущий момент в платформе настроены процессы MLOps (версионирование моделей, experiment tracking, сборка исполняемых сервисов на базе разработанных моделей) с возможностью отслеживания происхождения артефактов. Архитектура платформы обеспечивает автоматизированный процесс разработки и внедрения моделей, их перенос в промышленную среду, а также предоставляет инструменты для визуализации метрик экспериментов. Это позволяет сократить срок разработки, добиться воспроизводимости результатов и повысить надёжность комплексных конвейеров по обработке данных, элементами которых являются
Для построения платформы выбрано решение Kubeflow с открытым исходным кодом, предоставляющее централизованные средства для разработки
«В компании имеется отлаженный процесс и собственные инструменты по развёртыванию моделей машинного обучения как сервисов и включению их в конвейеры обработки данных, однако для повышения возможностей масштабирования, прозрачности процесса и сокращения времени по выводу исследовательских алгоритмов в промышленную эксплуатацию было решено разработать новую DS-платформу. Это даёт возможность как для более тесной интеграции внутренних команд, так и при необходимости, для оперативного подключения внешних команд к разработке новых моделей с автоматизированной валидацией качества предложенных решений», — отметил Василий Кузьмин, CIO Mediascope.
«Mediascope — технологичная компания, использующая большое количество сложных